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On the bicrossproduct structures for theUλ(isoω2,...,ωN (N))
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Abstract. It is shown that the family of deformed algebrasUλ(isoω2,...,ωN (N)) has a different
bicrossproduct structure for eachωa = 0 in analogy to the undeformed case.

1. Introduction

Deformed algebras (usually called ‘quantum groups’) have received much attention since
the original works of Drinfel’d, Jimbo and Faddeev, Reshetikhin and Takhtajan [1–4] which
gave a (unique) deformation procedure for simple Lie algebras. However, the deformation
of non-simple Lie algebras has been characterized by the lack of a definite prescription and
this explains why inhomogeneous algebras do not have a unique deformation.

One possible approach to deforming non-simple algebras is by extending the contraction
of Lie algebras to the framework of deformed Hopf algebras, an idea originally introduced
by Celeghiniet al [5, 6]. As is well known, the standarḋInönü–Wigner [7] contraction of
(simple) Lie algebras leads to non-simple algebras which have a semidirect structure, where
the ideal is the Abelianized part of the original algebra. By introducing higher powers in the
contraction parameter or, equivalently, by performing two (or more) successive contractions
it is also possible to arrive to algebras with a central extension structure.

This simple mechanism becomes difficult to implement for deformed algebras for which
it is usually necessary to redefine the deformation parameter in terms of the contraction one
to have a well-defined contraction limit [5, 6]. This is the case, for instance, of theκ-
Poincaŕe algebra [8, 9] in which the deformation parameterκ appears as a redefinition of
the original (adimensional) parameterq of soq(3, 2) in terms of the de Sitter radiusR.

A way to skip some of the problems of the standard contraction procedure for deformed
algebras is to use the method of ‘graded’ contractions. This mechanism was put forward
by Moody, Montigny and Patera [10, 11] for Lie algebras and has been applied recently
to describe a large set of deformed Hopf algebras [12, 13]. The scheme provides the
deformation of all motion algebras of flat affine spaces inN dimensions (the deformed
Cayley–Klein (CK) algebrasUλ(isoω2,...,ωN (N))‡) including, the κ-Poincaŕe algebra in
arbitrary dimensions, other deformations of the PoincaréN -dimensional algebra, the Galilei
algebra, etc.

† E-mail address: pbueno@lie.ific.uv.es
‡ The orthogonal CK family of algebras are the Lie algebras of the motion groups of real spaces with a projective
metric [14, 15].
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A different point of view to study inhomogeneous deformed algebras is provided by
Majid’s bicrossproduct structure[16–18]. In this construction we find the analog of the
Lie algebra semidirect structure (and of the central extension structure in the more general
case) for Hopf algebras and provides, for this reason, an appropriate setting for the study
of deformations of inhomogeneous algebras. This structure covers most of the deformed
algebras obtained by contraction but not all (see [19]). Thus, in the case of deformed
algebras, the correspondence between contraction and semidirect structure that exists in the
Lie algebra setting is not straightforward.

Nevertheless, the study of the particular algebras for which the structure of
bicrossproduct is present, turns out to be useful to understand its properties because the
deformation is mainly encoded in the action and coaction mappings that characterize the
bicrossproduct, whereas the (two) Hopf algebras from which the bicrossproduct deformed
algebra is constructed are usually undeformed. In the appropriate limit of the deformation
parameter we obtain the undeformed algebra, the coaction mapping is trivialized and the
action mapping is given by the Lie algebra commutators so that we recover the semidirect
product structure. A particular example is theκ-Poincaŕe algebra [8] the bicrossproduct
structure of which was found by Majid and Ruegg [20].

Recently [21] (see also [22]) has been shown that the whole family of deformed
inhomogeneous CK algebrasUλ(isoω2,...,ωN (N)) has a bicrossproduct structure, in analogy to
the semidirect one that appears after the contraction which goes fromso(p, q) to iso(p, q)†
and that it remains under all the possible graded contractions. However, the question that
naturally arises is whether these contractions carry new bicrossproduct structures related
to the semidirect ones of the undeformed algebra which are the result of each contraction
(see (2.2) below). We prove in this paper that this is indeed the case so that, for every
graded contraction in the inhomogeneous deformed CK familyUλ(isoω2,...,ωN (N)), we have
an associated bicrossproduct structure. The (a priori non-obvious) fact that all the possible
semidirect product structures of the undeformed inhomogeneous CK algebras have a direct
counterpart in the deformed case is the main result of this paper.

The paper is organized as follows. In section 2 we provide an account of the
(undeformed) CK algebras and their graded contractions. In section 3 some of the results
in [21] are summarized. They will permit us in section 4 to show that for each possible
graded contraction in the CK family a new bicrossproduct structure arises. Our results are
illustrated at the end with some examples.

2. The orthogonal CK family of algebras

Let us start by recalling the definition of the orthogonal CK family of algebras‡. This
family, denoted bysoω1,...,ωN (N+1), is a set of algebras characterized byN real parameters
(ω1, . . . , ωN) (within this family we find, for instance, the originalso(N + 1) algebra, the
N -dimensional Poincaré algebra, the Euclidean algebra, etc). Their members share many
properties with the (parent) simple Lie algebra and hence may be called ‘quasisimple’. They
correspond exactly to the motion algebras of the geometries of a real space with a projective
metric in the CK sense [14, 15] and are therefore called CK orthogonal algebras. Their

† Note that associated to each contraction there exists, at the undeformed level, a semidirect product structure and,
at the deformed level, a possible bicrossproduct structure associated to it. In this particular case the contraction
so(p, q)→ iso(p, q) gives rise to a semidirect structure in which we havep+q Abelian (momentum) generators
and a (pseudo-)orthogonal group acting on them.
‡ These algebras are a subset of allZ⊗N2 -graded contractions obtained fromso(N + 1) depending on 2N − 1 real
parameters (see [23]).
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non-zero brackets are

[Jab, Jac] = ωabJbc [Jab, Jbc] = −Jac [Jac, Jbc] = ωbcJab (2.1)

whereωab =
∏b
s=a+1ωs anda < b < c. By simple rescaling of the generators the values

ωi may be brought to one of the values 1, 0 or−1.
The structure of these algebras may be defined by two main statements.
• When allωi are non-zero the algebra is isomorphic to a certain (pseudo-)orthogonal

algebra.
• When a constantωa = 0 the resulting algebrasoω1,...,ωa=0,...,ωN (N + 1) has the

semidirect structure

soω1,...,ωa=0,...,ωN (N + 1) ≡ t � (soω1,...,ωa−1(a)⊕ soωa+1,...,ωN (N + 1− a)) (2.2)

where t is an Abelian subalgebra of dimension dimt = a(N + 1− a) and the remaining
subalgebra is a direct sum. In particular, whena = 1 we obtain the usual (pseudo-)
orthogonal inhomogeneous algebrassoω1=0,ω2,...,ωN (N + 1) with semidirect structure

soω1=0,ω2,...,ωN (N + 1) ≡ isoω2,...,ωN (N) = tN � soω2,...,ωN (N). (2.3)

The structure behind the decomposition (2.2) can be described visually by setting the
generators in a triangular array (see figure 1). The generators spanning the subspacet are
those inside the rectangle, while the subalgebrassoω1,...,ωa−1(a) andsoωa+1,...,ωN (N + 1− a)
correspond to the two triangles to the left and below the rectangle respectively. In the
ω1 = 0 (ωN = 0) case the box is reduced to a single row (column) in the large triangle.

To distinguish between the generators we shall denote byX those inside the box (Abelian
algebra) and byJ those in the two triangles. Namely,

Xij ⇒ i < a and j > a
Jij ⇒ i > a or j < a.

(2.4)

When two constants are set equal to zero (ωa andωb say) we have two different semidirect
decompositions (2.2) corresponding to the constantωa = 0 or to the constantωb = 0. For
instance, the (3, 1)-Galilei algebra appears in this context forω1 = 0, ω2 = 0, ω3 = 1,
ω4 = 1 and accordingly has two different semidirect structures which correspond to the
constantsω1 andω2.

3. The deformed family of inhomogeneous CK algebras

We summarize in this section some facts concerning the family of deformed inhomogeneous
CK algebras. There exists [12, 13] a family of Hopf algebras, denoted byUλ(isoω2,...,ωN (N)),

J01 J02 . . . J0a−1 J0a J0a+1 . . . J0N

J12 . . . J1a−1 J1a J1a+1 . . . J1N

. . .
...

...
...

...

Ja−2a−1 Ja−2a Ja−2a+1 . . . Ja−2N

Ja−1a Ja−1a+1 . . . Ja−1N

Ja a+1 . . . JaN
. . .

...

JN−1N

Figure 1. Generators of the CKsoω1,...,ωN (N + 1) algebra.
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whose members are a deformation of the CK algebras and, therefore, may be called
‘quantum’ inhomogeneous CK algebras. In [21] it was shown that all these deformed
algebras are endowed with a bicrossproduct structure that corresponds to the undeformed
semidirect one (2.3) in which the Abelian algebra is given by the single row with generators
J0i (see figure 1 fora = 1).

Explicitly the deformed Hopf algebraUλ(isoω2,...,ωN (N)) is given (in the basis in which
its bicrossproduct structure is displayed) by
• Commutators

[J0i , J0j ] = 0 [J0i , J0N ] = 0

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , JiN ] = ωijJjN [Jij , JjN ] = −JiN [JiN , JjN ] = ωjNJij
[Jij , J0k] = δikJ0j − δjkωijJ0i [Jij , J0N ] = 0

[JiN , J0j ] = δij
(

1− e−2λJ0N

2λ
− λ

2

N−1∑
s=1

ωsNJ2
0s

)
+ λωiNJ0iJ0j

[JiN , J0N ] = −ωiNJ0i .

(3.1)

• Coproduct

1(J0i ) = e−λJ0N ⊗ J0i + J0i ⊗ 1 1(J0N) = 1⊗ J0N + J0N ⊗ 1

1(Jij ) = 1⊗ Jij + Jij ⊗ 1

1(JiN ) = e−λJ0N ⊗ JiN + JiN ⊗ 1+ λ
i−1∑
s=1

ωiNJ0s ⊗ Jsi − λ
N−1∑
s=i+1

ωsNJ0s ⊗ Jis .
(3.2)

• Counit

ε(J0i ) = ε(J0N) = ε(Jij ) = ε(JiN ) = 0. (3.3)

• Antipode

γ (J0i ) = −eλJ0N J0i γ (J0N) = −J0N γ (Jij ) = −Jij

γ (JiN ) = −eλJ0N JiN + λeλJ0N

i−1∑
s=1

ωiNJ0sJsi − λeλJ0N

N−1∑
s=i+1

ωsNJ0sJis .
(3.4)

4. Bicrossproduct structures for theUλ(isoω2,...,ωN (N )) family of algebras

As a previous result, let us recall the following.

Theorem 4.1 ([21]).The deformed Hopf CK family of algebrasUλ(isoω2,...,ωN (N)) has a
bicrossproduct structure

Uλ(isoω2,...,ωN (N)) = U(soω2,...,ωN (N))
βBJαUλ(TN) (4.1)

relative to the right action

α(J0i , Jjk) ≡ J0i G Jjk := [J0i , Jjk] (4.2)

and left coactionβ

β(Jij ) = 1⊗ Jij

β(JiN ) := e−λJ0N ⊗ JiN + λ
i−1∑
s=1

ωiNJ0s ⊗ Jsi − λ
N−1∑
s=i+1

ωsNJ0s ⊗ Jis
(4.3)
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whereUλ(TN) is the Abelian Hopf algebra generated byJ0i and U(soω2,...,ωN (N)) is the
undeformedcocommutative Hopf algebra (with primitive coproduct) generated byJij with
the commutation relations given in the second and third line of (3.1).

Let us now setωa = 0; then the algebraUλ(isoω2,...,ωa=0,...,ωN (N)) is given (with the
notation in (2.4)) by
• Commutators

X-sector{[Xij ,Xkl ] = 0 (4.4)

J-sector



[J0i , J0k] = 0

[Jij , J0k] = δikJ0j − δjkωijJ0i

[JiN , J0j ] = λωiNX0iJ0j

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , JiN ] = ωijJjN [Jij , JjN ] = −JiN [JiN , JjN ] = ωjNJij .

(4.5)

JX-sector



[J0i ,X0j ] = [J0i ,X0N ] = 0

[Jij ,Xik] = ωijXjk [Jij ,Xjk] = −Xik
[Jjk,Xij ] = Xik [Jjk,Xik] = −ωjkXij
[Jij ,XiN ] = ωijXjN [Jij ,XjN ] = −XiN
[JjN ,Xij ] = XiN [JjN ,XiN ] = −ωjNXij
[J0k,Xij ] = −δikX0j [Jij ,X0k] = δikX0j − δjkωijX0i

[Jij ,X0N ] = 0 [JiN ,X0N ] = −ωiNX0i

[J0i ,XjN ] = −δij
(

1− e−2λX0N

2λ

λ

2

N−1∑
s=a

ωsNX2
0s

)

[JiN ,X0j ] = δij
(

1− e−2λX0N

2λ
− λ

2

N−1∑
s=a

ωsNX2
0s

)
+ λωiNX0iX0j .

(4.6)

• Coproduct

X-sector


1X0N = 1⊗ X0N + X0N ⊗ 1 1Xij = 1⊗ Xij + Xij ⊗ 1

1X0i = e−λX0N ⊗ X0i + X0i ⊗ 1

1XiN = e−λX0N ⊗ XiN + XiN ⊗ 1− λ
N−1∑
s=a

ωsNX0s ⊗ Xis
(4.7)

J-sector



1J0i = e−λX0N ⊗ J0i + J0i ⊗ 1 1Jij = 1⊗ Jij + Jij ⊗ 1

1JiN = e−λX0N ⊗ JiN + JiN ⊗ 1+ λ
a−1∑
s=1

ωiNJ0s ⊗ Xsi

+ λ
i−1∑
s=a

ωiNX0s ⊗ Jsi − λ
N−1∑
s=i+1

ωsNX0s ⊗ Jis .

(4.8)

• Counit

ε(Jij ) = ε(J0i ) = ε(JiN ) = 0

ε(Xij ) = ε(X0i ) = ε(X0N) = ε(XiN ) = 0.
(4.9)
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• Antipode

X-sector


γ (X0N) = −X0N γ (Xij ) = −Xij
γ (X0i ) = −eλX0NX0i

γ (XiN ) = −eλX0NXiN − λeλX0N

N−1∑
s=a

ωsNX0sXis

(4.10)

J-sector



γ (Jij ) = −Jij
γ (J0i ) = −eλX0N J0i

γ (JiN ) = −eλX0N JiN + λeλX0N

a−1∑
s=1

ωiNJ0sXsi

+λeλX0N

i−1∑
s=a

ωiNX0sJsi − λeλX0N

N−1∑
s=i+1

X0sJis .

(4.11)

This algebra, as a result of theorem 4.1, has a bicrossproduct structure (4.1). However,
the algebra (4.4)–(4.11) does not present directly a bicrossproduct structure for the
decomposition (2.2). This is due to the termλ

∑a−1
s=1 ωiNJ0s ⊗ Xsi in the JiN coproduct

(second line in (4.8)) and to the commutator [JiN , J0j ] (third line in (4.5)) that does not
close aJ algebra†.

Let us define

ĴiN = λ
a−1∑
s=1

ωiNJ0sXsi (4.12)

that verifies

1ĴiN = e−λX0N ⊗ ĴiN + ĴiN ⊗ 1+ λ
a−1∑
s=1

ωiNJ0s ⊗ Xsi + λ
a−1∑
s=1

ωiNe−λX0NXsi ⊗ J0s (4.13)

and

[ĴiN , J0j ] = λωiNJ0jX0i . (4.14)

Thus, the change of basisJiN → JiN − ĴiN solves the two difficulties pointed out before.
Specifically, if we introduce the new set of generators

J0i = J0i X0i = X0i X0N = X0N

Jij = Jij Xij = Xij XiN = XiN
JiN = JiN − ĴiN

(4.15)

the algebraUλ(isoω2,...,ωa=0,...,ωN (N)) is written as
• Commutators

X-sector


[X0i , X0j ] = [X0i , X0N ] = 0

[Xij ,X0k] = [Xij ,Xkl ] = [Xij ,XkN ] = 0

[XiN,X0j ] = [XiN,X0N ] = [XiN,Xjk] = [XiN,XjN ] = 0

(4.16)

† Nevertheless in the particular casea = N (ωN = 0) these terms are not present, and the change of basis given
in (4.15) is not necessary (note that forωN = 0 the change of basis is trivial).
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J -sector



[J0i , J0k] = 0

[Jij , J0k] = δikJ0j − δjkωijJ0i

[JiN , J0j ] = 0

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , JiN ] = ωijJjN [Jij , JjN ] = −JiN [JiN , JjN ] = ωjNJij

(4.17)

JX-sector



[J0i , X0j ] = [J0i , X0N ] = 0

[Jij , Xik] = ωijXjk [Jij , Xjk] = −Xik
[Jjk, Xij ] = Xik [Jjk, Xik] = −ωjkXij
[Jij , XiN ] = ωijXjN [Jij , XjN ] = −XiN [JjN ,Xij ] = XiN

[JjN ,XiN ] = −ωjNXij + λωjN
(

1− e−2λX0N

2λ
− λ

2

N−1∑
s=a

ωsNX
2
0s

)
Xij

[J0k, Xij ] = −δikX0j [Jij , X0k] = δikX0j − δjkωijX0i

[Jij , X0N ] = 0 [JiN ,X0N ] = −ωiNX0i

[JkN,Xij ] = δjkXiN + λωkNX0jXik

[J0i , XjN ] = −δij
(

1− e−2λX0N

2λ
− λ

2

N−1∑
s=a

ωsNX
2
0s

)

[JiN ,X0j ] = δij
(

1− e−2λX0N

2λ
− λ

2

N−1∑
s=a

ωsNX
2
0s

)
+ λωiNX0iX0j .

(4.18)

• Coproduct

X-sector


1X0N = 1⊗X0N +X0N ⊗ 1 1Xij = 1⊗Xij +Xij ⊗ 1

1X0i = e−λX0N ⊗X0i +X0i ⊗ 1

1XiN = e−λX0N ⊗XiN +XiN ⊗ 1− λ
N−1∑
s=a

ωsNX0s ⊗Xis
(4.19)

J -sector



1J0i = e−λX0N ⊗ J0i + J0i ⊗ 1 1Jij = 1⊗ Jij + Jij ⊗ 1

1JiN = e−λX0N ⊗ JiN + JiN ⊗ 1− λ
a−1∑
s=1

ωiNe−λX0NXsi ⊗ J0s

+ λ
i−1∑
s=a

ωiNX0s ⊗ Jsi − λ
N−1∑
s=i+1

ωsNX0s ⊗ Jis .

(4.20)

• Counit

ε(Jij ) = ε(J0i ) = ε(JiN) = 0

ε(Xij ) = ε(X0i ) = ε(X0N) = ε(XiN) = 0.
(4.21)

• Antipode

X-sector


γ (X0N) = −X0N γ (Xij ) = −Xij
γ (X0i ) = −eλX0NX0i

γ (XiN) = −eλX0NXiN − λeλX0N

N−1∑
s=a

ωsNX0sXis

(4.22)
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J -sector



γ (Jij ) = −Jij
γ (J0i ) = −eλX0N J0i

γ (JiN) = −eλX0N JiN − λeλX0N

a−1∑
s=1

ωiNXsiJ0s

+λeλX0N

i−1∑
s=a

ωiNX0sJsi − λeλX0N

N−1∑
s=i+1

ωsNX0sXis .

(4.23)

In this basis we now state the following.

Theorem 4.2.The algebraUλ(isoω2,...,ωa=0,...,ωN (N)) has the bicrossproduct structure

Uλ(isoω2,...,ωa=0,...,ωN (N))

= U(soω1=0,...,ωa−1(a))⊕ U(soωa+1,...,ωN (N + 1− a))βBJαUλ(Ta(N+1−a)) (4.24)

whereU(soω1=0,...,ωa−1(a)) is the undeformed Hopf algebra generated by{Jij , i < (a −
1), j < a}, U(soωa+1,...,ωN (N+1−a)) is spanned by the generators{Jij , i > (a−1), j > a}
and Uλ(Ta(N+1−a)) is the deformed Abelian algebra generated byXij (recall that those
generators are restricted to the indicesi < a and j > a, (2.4)). The right action
α : Uλ(Ta(N+1−a)) ⊗ U(soω1=0,...,ωa−1(a)) ⊕ U(soωa+1,...,ωN (N + 1 − a)) → Uλ(Ta(N+1−a))
is defined by (4.18) through

α(Xij , Jkl) ≡ Xij G Jkl := [Xij , Jkl ] (4.25)

and the (left) coactionβ : U(soω1=0,...,ωa−1(a)) ⊕ U(soωa+1,...,ωN (N + 1 − a)) →
Uλ(Ta(N+1−a))⊗ U(soω1=0,...,ωa−1(a))⊕ U(soωa+1,...,ωN (N + 1− a)) is designed to reproduce
the coproduct (4.20)

β(Jij ) = 1⊗ Jij
β(J0i ) = e−λX0N ⊗ Jij

β(JiN) = e−λX0N ⊗ JiN − λ
a−1∑
s=1

ωiNe−λX0NXsi ⊗ J0s + λ
i−1∑
s=a

ωiNX0s ⊗ Jsi

−λ
N−1∑
s=i+1

ωsNX0s ⊗ Jis .

(4.26)

From theorem 4.2 it is easy to check the following.

Corollary 4.1. Associated to each graded contraction in the inhomogeneous CK family of
deformed algebras we have a different bicrossproduct structure related to the corresponding
Lie algebra semidirect structure that appears in the contraction (see (2.2)). These
bicrossproduct structures are preserved under further (graded) contraction processes.
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5. Examples

5.1. N = 3 case

In theN = 3 case we obtain (in the basis of (3.1)–(3.4)) the following equations

[J0i , J0j ] = 0 i, j = 1, 2, 3

[J12, J13] = ω2J23 [J13, J23] = ω3J12 [J12, J23] = −J13

[J12, J03] = 0 [J12, J01] = J02 [J12, J02] = −ω2J01

[J13, J03] = −ω2ω3J01 [J23, J03] = −ω2J02

[J13, J01] = 1− e−2λJ03

2λ
+ λ

2
ω3(ω2J2

01− J2
02)

[J23, J02] = 1− e−2λJ03

2λ
− λ

2
ω3(ω2J2

01− J2
02)

[J13, J02] = λω2ω3J01J02 [J23, J01] = λω3J01J02

(5.1)

1J0i = e−λJ03 ⊗ J0i + J0i ⊗ 1 i = 1, 2

1J03 = 1⊗ J03+ J03⊗ 1 1J12 = 1⊗ J12+ J12⊗ 1

1J13 = e−λJ03 ⊗ J13+ J13⊗ 1− λω3J02⊗ J12

1J23 = e−λJ03 ⊗ J23+ J23⊗ 1+ λω3J01⊗ J12 .

(5.2)

We have stressed with a box the terms that might not allow the algebra to be a
bicrossproduct (see section 4). Ifω3 = 0 these terms cancel† but if ω2 = 0 we keep them
and we need the change of basis given in (4.15). In the new basis we have

1J23 = e−λX03 ⊗ J23+ J23⊗ 1− λω3X12e−λX03 ⊗ J01 (5.3)

and

[J23, J01] = 0. (5.4)

Thus, the terms marked above have disappeared after the change of basis and we have a
bicrossproduct structure as given in theorem 4.2.

5.2. A particular case: the Heisenberg–Weyl algebra

Now we are going to study the casea = N (i.e.ωN = 0). First, let us rename the generators
in the basis (4.15) as

J0i = Xi Jij = Jij XiN = Yi X0N = 4 (5.5)

(note that forωN = 0 theX sector is reduced to a single column in the triangular array in
figure 1). Now the equations (4.16)–(4.18) acquire the form

[Xi,4] = [Yi,4] = [Jij , 4] = 0

[Xi,Xj ] = 0 [Yi, Yj ] = 0

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , Xk] = δikXj − δjkωijXi [Jij , Yk] = δikωijYj − δjkYi
[Xi, Yj ] = −δij

(
1− e−2λ4

2λ

)
.

(5.6)

† Note that forω3 = 0 (i.e.ωN = 0) the change of basis (4.15) is trivial (see (4.12) and the previous footnote).
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In this way, we easily recognize the deformed Heisenberg–Weyl (HW) algebra [19] where
4 is the central generator and theJij generators act as a rotation group on theXi andYi
generators. The coproduct (4.19), (4.20) takes the form

14 = 1⊗4+4⊗ 1 1Jij = 1⊗ Jij + Jij ⊗ 1

1Xi = e−λ4 ⊗Xi +Xi ⊗ 1 1Yi = e−λ4 ⊗ Yi + Yi ⊗ 1.
(5.7)

From the arguments given above we know that this algebra has two different bicrossproduct
(semidirect like) structures, one for the Abelian algebra generated by{Xi,4}, and the other
for the Abelian algebra generated by{Yi,4} [19].

However, in this case, we have an additional cocycle bicrossproduct structure (analogue
to the undeformed central extension structure of the HW-algebra). To see this let us define
the algebraH as the undeformed algebra generated by{Xi, Yi, Jij } with primitive coproduct
and commutators

[Jij , Jik] = ωijJjk [Jij , Jjk] = −Jik [Jik, Jjk] = ωjkJij
[Jij , Xk] = δikXj − δjkωijXi [Jij , Yk] = δikωijYj − δjkYi
[Xi,Xj ] = 0 [Yi, Yj ] = 0 [Xi, Yj ] = 0

(5.8)

(note that all the commutators are identical to those in (5.6) but the [Xi, Yj ] one that now
is Abelian). The algebraA is the undeformed algebraU(4). Now if we define the right
actionG : A⊗H→ A

4 G Jij = 0 4 GXi = 0 4 G Yi = 0 (5.9)

(central extension means trivial action), the left coactionβ : H→ A⊗H
β(Jij ) = 1⊗ Jij β(Xi) = e−λ4 ⊗Xi β(Yi) = e−λ4 ⊗Xi (5.10)

the antisymmetric two-cocycleξ : H⊗H→ A†

ξ(Xi, Yj ) = −ξ(Yj ,Xi) = −δij
2

(
1− e−2λ4

2λ

)
(5.11)

and a trivial ‘two-cococycle’ the HW algebra is given by the bicrossproduct

Uλ(HW) = HBJξA. (5.12)

In this form it is easy to recover the dual algebra Funλ(HW) [19]. Let Rij be the dual
generators corresponding to the undeformed ‘rotation’ algebra generated byJij‡ and let
xi, yj be the dual coordinates to the generatorsXi, Yj . Then, the algebraH dual toH is
given by

1Rij = Rik ⊗ Rkj
1xi = 1⊗ xi + xk ⊗ Rki 1yi = 1⊗ yi + yk ⊗ R−1

ik

(5.13)

[Rij , Rkl ] = [Rij , xk] = [Rij , yk] = [xi, yj ] = 0. (5.14)

If we introduce the coordinateχ dual to the central generator4 we may complete the dual
algebra by dualizing the left coaction (5.10) and the two-cocycle (5.11). The left action is
defined as the dual to the left coaction

χ F xi = [χ, xi ] = −λxi χ F yi = [χ, yi ] = −λyi χ F Rij = [χ,Rij ] = 0

(5.15)

† The antisymmetric form of the cocycle is a matter of convention; different forms of the cocycle are related by
a coboundary change (see [24] for an explicit example).
‡ This algebra is a true rotation algebra forωi = 1 i = 1, . . . , N − 1; in general it is an inhomogeneous algebra
(if someω = 0) or a pseudo-orthogonal algebra. The dual algebra is given by the matrix representationRij .
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and the dual to the two-cocycle defines the two-cococycle§
ψ̄(χ) = 1

2(yi ⊗ R−1
ji xj − xi ⊗ Rijyj ). (5.16)

Thus, the coproduct is given by

1χ = 1⊗ χ + χ ⊗ 1+ 1
2(yi ⊗ R−1

ji xj − xi ⊗ Rijyj ). (5.17)

As we can see the bicrossproduct structure (with cocycle in this case) allows us to recover
Funλ(HW) in an easy way from the enveloping (dual) algebraUλ(HW).
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