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Abstract. It is shown that the family of deformed algebids(iso.,,...., (N)) has a different
bicrossproduct structure for eagh = 0 in analogy to the undeformed case.

1. Introduction

Deformed algebras (usually called ‘quantum groups’) have received much attention since
the original works of Drinfel'd, Jimbo and Faddeev, Reshetikhin and Takhtajan [1-4] which
gave a (unique) deformation procedure for simple Lie algebras. However, the deformation
of non-simple Lie algebras has been characterized by the lack of a definite prescription and
this explains why inhomogeneous algebras do not have a unique deformation.

One possible approach to deforming non-simple algebras is by extending the contraction
of Lie algebras to the framework of deformed Hopf algebras, an idea originally introduced
by Celeghiniet al [5, 6]. As is well known, the standaradnii—Wigner [7] contraction of
(simple) Lie algebras leads to non-simple algebras which have a semidirect structure, where
the ideal is the Abelianized part of the original algebra. By introducing higher powers in the
contraction parameter or, equivalently, by performing two (or more) successive contractions
it is also possible to arrive to algebras with a central extension structure.

This simple mechanism becomes difficult to implement for deformed algebras for which
it is usually necessary to redefine the deformation parameter in terms of the contraction one
to have a well-defined contraction limit [5, 6]. This is the case, for instance, okthe
Poincaé algebra [8, 9] in which the deformation parameteappears as a redefinition of
the original (adimensional) parameigmof so, (3, 2) in terms of the de Sitter radiug.

A way to skip some of the problems of the standard contraction procedure for deformed
algebras is to use the method of ‘graded’ contractions. This mechanism was put forward
by Moody, Montigny and Patera [10, 11] for Lie algebras and has been applied recently
to describe a large set of deformed Hopf algebras [12, 13]. The scheme provides the
deformation of all motion algebras of flat affine spacesMndimensions (the deformed
Cayley—Klein (CK) algebradf, (iso,.. .., (N))E) including, the x-Poincaé algebra in
arbitrary dimensions, other deformations of the Poiédérdimensional algebra, the Galilei
algebra, etc.

1 E-mail address: pbueno@lie.ific.uv.es

i The orthogonal CK family of algebras are the Lie algebras of the motion groups of real spaces with a projective
metric [14, 15].
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A different point of view to study inhomogeneous deformed algebras is provided by
Majid’s bicrossproduct structurg16—18]. In this construction we find the analog of the
Lie algebra semidirect structure (and of the central extension structure in the more general
case) for Hopf algebras and provides, for this reason, an appropriate setting for the study
of deformations of inhomogeneous algebras. This structure covers most of the deformed
algebras obtained by contraction but not all (see [19]). Thus, in the case of deformed
algebras, the correspondence between contraction and semidirect structure that exists in the
Lie algebra setting is not straightforward.

Nevertheless, the study of the particular algebras for which the structure of
bicrossproduct is present, turns out to be useful to understand its properties because the
deformation is mainly encoded in the action and coaction mappings that characterize the
bicrossproduct, whereas the (two) Hopf algebras from which the bicrossproduct deformed
algebra is constructed are usually undeformed. In the appropriate limit of the deformation
parameter we obtain the undeformed algebra, the coaction mapping is trivialized and the
action mapping is given by the Lie algebra commutators so that we recover the semidirect
product structure. A particular example is thePoincaé algebra [8] the bicrossproduct
structure of which was found by Majid and Ruegg [20].

Recently [21] (see also [22]) has been shown that the whole family of deformed
inhomogeneous CK algebrag(iso.,. ..., (N)) has a bicrossproduct structure, in analogy to
the semidirect one that appears after the contraction which goesstrgmg) toiso(p, ¢)1
and that it remains under all the possible graded contractions. However, the question that
naturally arises is whether these contractions carry new bicrossproduct structures related
to the semidirect ones of the undeformed algebra which are the result of each contraction
(see (2.2) below). We prove in this paper that this is indeed the case so that, for every
graded contraction in the inhomogeneous deformed CK fabfilyso.,....y(N)), we have
an associated bicrossproduct structure. Tehpr{ori non-obvious) fact that all the possible
semidirect product structures of the undeformed inhomogeneous CK algebras have a direct
counterpart in the deformed case is the main result of this paper.

The paper is organized as follows. In section 2 we provide an account of the
(undeformed) CK algebras and their graded contractions. In section 3 some of the results
in [21] are summarized. They will permit us in section 4 to show that for each possible
graded contraction in the CK family a new bicrossproduct structure arises. Our results are
illustrated at the end with some examples.

2. The orthogonal CK family of algebras

Let us start by recalling the definition of the orthogonal CK family of algebrashis

family, denoted byo,,, . ., (N +1), is a set of algebras characterized¥yeal parameters

(w1, ..., wy) (within this family we find, for instance, the originab(N + 1) algebra, the
N-dimensional Poincéralgebra, the Euclidean algebra, etc). Their members share many
properties with the (parent) simple Lie algebra and hence may be called ‘quasisimple’. They
correspond exactly to the motion algebras of the geometries of a real space with a projective
metric in the CK sense [14, 15] and are therefore called CK orthogonal algebras. Their

1 Note that associated to each contraction there exists, at the undeformed level, a semidirect product structure and,
at the deformed level, a possible bicrossproduct structure associated to it. In this particular case the contraction
so(p, q) — iso(p, q) gives rise to a semidirect structure in which we have ¢ Abelian (momentum) generators

and a (pseudo-)orthogonal group acting on them.

i These algebras are a subset of’@”-graded contractions obtained fram(N + 1) depending on® — 1 real
parameters (see [23]).
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non-zero brackets are

[Jab7 Jac] = wabec [Jab7 ch] = _Jac [Jam ch] = wbceﬂab (21)

wherew,, = ]_[f:aJrl w; anda < b < ¢. By simple rescaling of the generators the values
w; may be brought to one of the values 1, 0-et.

The structure of these algebras may be defined by two main statements.

e When allw; are non-zero the algebra is isomorphic to a certain (pseudo-)orthogonal
algebra.

e When a constanty, = 0 the resulting algebrao,, . w,-o.. .oy(N + 1) has the
semidirect structure

..... oy(N+1—a)) (2.2)

wheret is an Abelian subalgebra of dimension dira- a(N + 1 — a) and the remaining
subalgebra is a direct sum. In particular, when= 1 we obtain the usual (pseudo-)
orthogonal inhomogeneous algebsas, o «,....., (N + 1) with semidirect structure

..... wN (N) =iy0O Sowg,...,wN(N)- (23)

The structure behind the decomposition (2.2) can be described visually by setting the
generators in a triangular array (see figure 1). The generators spanning the subsmace
.......... wy (N + 1 - a)
correspond to the two triangles to the left and below the rectangle respectively. In the
w1 = 0 (wy = 0) case the box is reduced to a single row (column) in the large triangle.
To distinguish between the generators we shall denof€ thypse inside the box (Abelian
algebra) and by those in the two triangles. Namely,

$0w,=0,w,..., a)N(N + 1) = iSOwZ

Xij=>i<a and i >a
" - (2.4)
Jij=i>a or j <a.

When two constants are set equal to zesp &ndw, say) we have two different semidirect
decompositions (2.2) corresponding to the constant 0 or to the constand, = 0. For
instance, the (3, 1)-Galilei algebra appears in this contextioe= 0, w, = 0, w3z = 1,

w4 = 1 and accordingly has two different semidirect structures which correspond to the
constantsy; and w,.

3. The deformed family of inhomogeneous CK algebras

We summarize in this section some facts concerning the family of deformed inhomogeneous

.....

Jor Joz ... Joa Joa Joavr ... Jon
Jio oo Jia J14 Juvr o0 Jwy
Ja—Zu—l Ja—Za Ju—2a+1 cee v]]a—ZN
Ja—la v]]a—la-',-l cee u]]a—lN
JaLH-l CIEIR u]]aN
In-1n

Figure 1. Generators of the CKo,, ...y (N + 1) algebra.
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whose members are a deformation of the CK algebras and, therefore, may be called
‘quantum’ inhomogeneous CK algebras. In [21] it was shown that all these deformed
algebras are endowed with a bicrossproduct structure that corresponds to the undeformed
semidirect one (2.3) in which the Abelian algebra is given by the single row with generators
Joi (see figure 1 fou = 1).

Explicitly the deformed Hopf algebi@, (iso,,
its bicrossproduct structure is displayed) by

e Commutators

[Joi. Joj] =0 [Joi, Jov] =0

[Jijs Jix] = wijJju [Jij, Jjx] = —Ji Wik, Jjx] = ojdij

[Jij, Jin] = wijdjn Wij, Jin]l = =Jin Uin, Jjn] = ojndij

[Jij» Joe] = ixdoj — SjxwijJoi [Jij, Jov] =0 (3.1)

oy (N)) is given (in the basis in which

yeeey

1— e 2o

Win, Jo;] = 8;; ( >

=
2 Z wSNJSs> + AwinJoiJo;
s=1

UJin, Jon] = —winJoi-

e Coproduct
AJo) =e ™" @ Jo +Jo ® 1 AJon) =1 Joy +Jov ® 1
AU =10J0;+J;®1

i1 N-1 3.2)
AQin) =€ @ Ty +Jin @ L+ 1) windos @ Jsi =2 ) wvdor ® Jis.
s=1 s=i+1
e Counit
eloi) = elon) = eJ;j) = elin) = 0. (3.3)
e Antipode
y o) = —ov ], v Jov) = —Jon yJij) = =1i;
i—1 N-1 (34)
yJin) = —€N ]y + aeHlov ZwiNJOsti — peHov Z wsnJosJis.
s=1 s=i+1

4. Bicrossproduct structures for thely (iso.,,..... (IN)) family of algebras

.....

As a previous result, let us recall the following.

Theorem 4.1 ([21]).The deformed Hopf CK family of algebrds, (iso.,
bicrossproduct structure

oy (N)) has a

U (i50up,....on (N)) = U(50uy,..oy (N)) >y (Tiv) 4.1)
relative to the right action

a(oi, Jjx) = Jor <dji = [Jois Jje] 4.2)
and left coactiorp

Blij) =1® J;;

. Aoy . o . R = , (43)
BAin) =€ @Tin + 1) windos ®Tsi =& Y wnJos ® Jis

s=1 s=i+1
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wherel, (Ty) is the Abelian Hopf algebra generated By and i (so.,.  .,(N)) is the
undeformedcocommutative Hopf algebra (with primitive coproduct) generated;pyvith
the commutation relations given in the second and third line of (3.1).

Let us now setw, = 0; then the algebréf, (isou,.. w,—o.. .0y (N)) is given (with the
notation in (2.4)) by
¢ Commutators

X-sectof[X;;, Xi] =0 (4.4)
[Joi, Jo] =0
[Jij, Jox] = ixJoj — Sjxwijdoi
J-sector [Jin, Joj] = AwinXoiJoj (4.5)

[Jij, Jix] = wijdk [Jij, Jje] = =Juk [Jic, Tjx] = wjidi;

[Jt]thN] a),j jN [JijijN] = —Jin [JiN,JjN] = ijJij'

[Joi, Xo;] = [Joi, Xon] =0

[Jij, Xik] = 0 X [Jij, Xjx] = =X

[T, Xij] = Xix [k, Xix] = —0jiXj;

i, Xin] = 0i;Xjn [Jij, Xjn] = —Xin

Uin, Xi5] = Xin Uin, Xin] = —ojn X

JX-sector! [Jox, Xij] = —8uXo; [Jij, Xow] = 8ixXo; — 8jrwij Xoi (4.6)
[Jijv XON] =0 [Jizv, XON] = —w;nyXo;

1— e & ) I
Joi, Xjn] = =6 (TE Z a’sNX(ZJ‘y>

S=a

1—e 2w ) 4=
[Jin, Xo;] = 5ij(— -3 Z YNX(:Z)S> + A v Xi Xoj.

e Coproduct

AXogy =10 Xoy + Xov ® 1 AXUZJ.@XU'FXU@J.
AXg = €7 @ Xo; + Xo ® 1

X-sector Vo1 4.7)

AXjy =N @ Xy + Xiy @ 1 — A Z wsnXos ® X

Ao = eV @y +Jo ®1 Alij=1®J;; +J;®1

a—1

AJ;N _)LXON ®J1N +J1N ®1+)\‘Zw1NJOS ®Xst

J-sector = (4.8)
+ A ZwiNXOX ® JS[ - A Z a)SNXOX ® «]L'm
s=a s=i+1
e Counit
SJi'ZSJiZSJ,’ =0
Jij) = eJo) = eTin) 4.9)

(X)) = e(Xg) = e(Xoy) = e(Xjy) = 0.
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e Antipode

y Xon) = —Xon y(Xj) = =Xjj

Xoi) = -V Xy,
X-sector v Rw) . (4.10)

N-1
Y (Xin) = €50 Ky — 2870 " oy Ko X

y(Jij) = =J;;
yJo) = —€5 Jg;
a—1
J-sector] ¥ (Jin) = —€% Ty + 25 Y~ iy Jos Xy (4.11)
s=1
i1 N-1
+ gt Za)iNXOsti — pet¥ov Z Xosdis.
s=a s=i+1

This algebra, as a result of theorem 4.1, has a bicrossproduct structure (4.1). However,
the algebra (4.4)-(4.11) does not present directly a bicrossproduct structure for the
decomposition (2.2). This is due to the teWwE?;llw,-NJos ® X,; in the J;y coproduct
(second line in (4.8)) and to the commutatdaf, Jo;] (third line in (4.5)) that does not
close aJ algebrdg.

Let us define

a—1
Jiv = A Z ;N Jos Xi (4.12)
s=1
that verifies
. R R a—1 a—1
Ay =€ @ Jin + Jin @ 1+ 1) windos ® Xy + 1) wive X @ Jos  (4.13)
s=1 s=1
and
[Jin, Joj] = rwinJo;jXo;. (4.14)

A

Thus, the change of baslsy — J;xy — J;y solves the two difficulties pointed out before.
Specifically, if we introduce the new set of generators

Joi = Joi Xoi = Xg; Xoy = Xon
Jij = Jij Xij =Xjj Xiv =Xin (4.15)
Jiv =Jin — Jin

the algebrdf, (isou,. .. w,—o...0y (N)) iS written as
¢ Commutators
[Xoi, Xo;] = [Xoi, Xon] =0
X-sector} [X;;, Xo] = [Xij, Xu] = [Xij, Xen] =0 (4.16)
[Xin, Xoj] = [Xin, Xon] = [Xin, Xjz] = [Xin, Xjn] =0

1 Nevertheless in the particular case= N (oy = 0) these terms are not present, and the change of basis given
in (4.15) is not necessary (note that foy, = 0 the change of basis is trivial).



J-sector
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[Joi, Jau] =0
[Jij, Joe] = 8irJoj — Sjxwij Joi
[Jin, Joj1 =0
[Jij, Jik] = wijJji [ij, Jix] = —Ji [ik, Jix] = wji i
[Jij, Jin] = wij Jin [ij. Jin]l = —Jin [Jin, Jin] = ojnJij
[Joi, Xo;] = [Joi» Xon] =0
[Jij, Xix] = wij Xi [Jij, Xjx] = —Xix
[Jik, Xij] = Xix ik, Xi] = —ojXij
[Jij, Xin] = 0 Xjn [Jij, Xjn] = —Xin [JjNv Xijl = Xin
[Jin, Xin] = —ojn Xij + /\wﬂv< —e e Z a)gNXOY)
[Jot, Xij] = =81 Xo; [Jij, Xox] = i Xoj — Sjxwij Xoi

[Jij, Xon] =0 [Vin, Xon] = —win Xoi
[JkNv X,‘j] = (SijjN + )kaNXOink

1 e—ZAXON
[Joi, Xjn] = =6ij| —— — 3 ZvaXm

1—e2Xw N

[Jin, Xo;] = 5ij< o "2 NX0Y> + 2oin Xoi Xoj -

e Coproduct

AXoy = 1® Xoy + Xov ® 1 AX;jj=1®X;;+X;®1
AXo =€V @ X 4+ X0 ® 1
X-sector N1
AXIN AXON®XN+X1N®1 AZwSNXO.S'@XIS
AJOi:ei)LXON®JO[+JO[®1 AJ,j:1® Jij+-lij®1
—1
ATy =" @ Uiy +Jin®1—=1 ) wine ™ Xy ® Jo,
J-sector ~
i-1 N-1
+ )‘«ZwiNXOs ® Jsi - A Z wSNXOS ® Jis-
s=a s=i+1
e Counit
e(Jij) =e(Jo) =e(in) =0
e(Xij) = e(Xo) = e(Xon) = e(Xin) = 0.
e Antipode
y(Xon) = —Xon v(Xij) = —X;j
y(Xo) = —€¥ Xq;
X-sector

N-1
y(Xin) = =X Xy — 285 Y "y Xog Xi

sS=a

6511

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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y(Jij) = —Jjj
y(Joi) = —€¥v
a—1
J-sector} ¥ (Jiy) = —&¥N Jjy — aeh¥ov ZwiNXsiJOS (4.23)
s=1
i-1 N-1
+)\e)LX0N ZwiNXOSJSi - )\eAXON Z wsNXOins~
s=a s=i+1

In this basis we now state the following.

..... w.=0....y (N)) has the bicrossproduct structure

..........

whereU (s04,=0,...0, . (@)) is the undeformed Hopf algebra generated{ly, i < (a —
D, j < a},U($0w,.,,..0on (N+1—a)) is spanned by the generatdts;, i > (a—1), j > a}
and Uy (Tun+1-)) is the deformed Abelian algebra generated Xy (recall that those
generators are restricted to the indices< a and j > 4, (2.4)). The right action
a M)L(Ta(NJrlfa)) ® U(Sowlzo,...,wa_l(a)) ® Z/{(sowu+1 wy (N + 1- a)) - u)n(Ta(Nlefa))
is defined by (4.18) through

a(Xij, Ju) = Xij < Ju = [Xij, Jul (4.25)

and the (left) coactiong : U(s0um=0,. w0, (@) ® U(S0w, ... oy(N +1 — a)) —
U (Tav+1-a)) @ U(504,=0 oy (N +1—a)) is designed to reproduce
the coproduct (4.20)

,,,,,,,,,,

BWJij) =1® J;;
B(Jo) = e ® Jj;
a—1 i—-1
Bin) = €N @ Jiy — A Z win€ KN X ® Jos + A ZwiNXOs ® Jsi (4.26)
s=1 s=a
N-1
—A Z wsNXOs ® Jis~
s=i+1

From theorem 4.2 it is easy to check the following.

Corollary 4.1. Associated to each graded contraction in the inhomogeneous CK family of
deformed algebras we have a different bicrossproduct structure related to the corresponding
Lie algebra semidirect structure that appears in the contraction (see (2.2)). These
bicrossproduct structures are preserved under further (graded) contraction processes.
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5. Examples

5.1. N = 3 case

In the N = 3 case we obtain (in the basis of (3.1)—(3.4)) the following equations
[Joi, Jo;1 =0 i,j=123

[J12, J13] = w2J23 [J13, J23] = wsJ12 [J12, Jog] = —J13

[J12, Jog] =0 [J12, Jo1] = Jo2 [J12, Joz2] = —w2Jon

[J13, Jo3] = —wowalo1 [J23, Joz] = —w2Jo2
1-e s ) . (5.1)
[J13, Joi] = o + EwB(wZ«Hm —J52)
1—e 2 )
[J23, Jo2] = o ECUS(wZng [
[J13, Joo] = Awowslordoz [J23, Jo1] =
Ao =@ Ju+Ja®1 i=12

AJoz=1® Joz+Jos® 1 AJ12=10J12+J12® 1
Aliz =€ @ Ji3+ J13® 1 — Aw3lo2 ® J12

Alpz=eMe@ Jos+Jn@1+ .

We have stressed with the terms that might not allow the algebra to be a
bicrossproduct (see section 4).d§ = 0 these terms candebut if w, = 0 we keep them
and we need the change of basis given in (4.15). In the new basis we have

AJyz = g Mo g Joz+ J3® 1 — )»0)3X126_)‘x°3 ® Jo1 (5.3)

(5.2)

and
[J23, Jo1] = 0. (5.4)

Thus, the terms marked above have disappeared after the change of basis and we have a
bicrossproduct structure as given in theorem 4.2.

5.2. A patrticular case: the Heisenberg—\Weyl algebra
Now we are going to study the cage= N (i.e.wy = 0). First, let us rename the generators
in the basis (4.15) as

Jor = X; Jij = Jij Xin =Y, Xoy =& (5.5)
(note that forwy = 0 the X sector is reduced to a single column in the triangular array in
figure 1). Now the equations (4.16)—(4.18) acquire the form

[Xi9 E] = [Ylv E] = [Jijs E] =0

[Xi.X;1=0 [Y;,Y;]=0

[Jij, Jik] = wijJjx [Jijs il = —Jix [k, Jix] = wji Jij

(5.6)
[ij, Xi] = 8 Xj — Sjrwi; X [Jij, Yi] = 8ixw;jY; — 8 Y;
1— e72)LE
X v]=—8; [ ——— ).
[ il / < 2% )

1 Note that foroz = 0 (i.e. wy = 0) the change of basis (4.15) is trivial (see (4.12) and the previous footnote).
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In this way, we easily recognize the deformed Heisenberg—Weyl (HW) algebra [19] where
& is the central generator and thlg generators act as a rotation group on MieandY;
generators. The coproduct (4.19), (4.20) takes the form

AE=1QE+E®1 AJj=1®J;+J;®1
AX,=e"E@ X, +X;®1 AY, =e*E Y, +Y, 1L
From the arguments given above we know that this algebra has two different bicrossproduct
(semidirect like) structures, one for the Abelian algebra generat¢d by}, and the other
for the Abelian algebra generated by;, E} [19].

However, in this case, we have an additional cocycle bicrossproduct structure (analogue
to the undeformed central extension structure of the HW-algebra). To see this let us define
the algebral{ as the undeformed algebra generated Xy Y;, J;;} with primitive coproduct
and commutators

[ij, Jir] = wijJix [ij, Jix] = —Jik Uik, Jix] = wji i

[ijs Xi] = i Xj — 8jrwij X [ij, Y] = uxewi; Y — 81 Y (5.8)
(note that all the commutators are identical to those in (5.6) butXhgY}] one that now
is Abelian). The algebrad is the undeformed algebid(Z). Now if we define the right
action<: AQH — A

(5.7)

E<J;=0 E<X; =0 E<Y; =0 (5.9)
(central extension means trivial action), the left coacifonH — AQ® H

B =1® J;; B(X) =R X, BY) =€e"*®X;, (5.10)
the antisymmetric two-cocycle : H @ H — At

{01 = =500 = =2 (22 (511)
and a trivial ‘two-cococycle’ the HW algebra is given by the bicrossproduct

U, (HW) = H>«: A. (5.12)

In this form it is easy to recover the dual algebra i) [19]. Let R;; be the dual
generators corresponding to the undeformed ‘rotation’ algebra generatdgibgnd let
x;, y; be the dual coordinates to the generatfs Y;. Then, the algebr&/ dual to’H is
given by

AR;; = Rix ® Ry

Axi = 1® x; +x; @ Ry Ay =1® v+ y ® Ry"

[Rij, Rl = [Rij, xi] = [Rij, wi] = [xi, y;] = 0. (5.14)
If we introduce the coordinatg dual to the central generat@ we may complete the dual

algebra by dualizing the left coaction (5.10) and the two-cocycle (5.11). The left action is
defined as the dual to the left coaction

(5.13)

x> x =[x, x] = —\x x>y =[x, yl=—Ayi x> Rij =[x, Ri;j]=0
(5.15)

T The antisymmetric form of the cocycle is a matter of convention; different forms of the cocycle are related by
a coboundary change (see [24] for an explicit example).

i This algebra is a true rotation algebrafor=1i =1, ..., N —1; in general it is an inhomogeneous algebra

(if somew = 0) or a pseudo-orthogonal algebra. The dual algebra is given by the matrix represeRtation
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and the dual to the two-cocycle defines the two-cocogycle

V(X)) =301 ® R;'x; — x; ® Rijyj). (5.16)

Thus, the coproduct is given by

Ax=1@x +x ® 1+ 5(3i ® R;;'x; — xi ® Ri})). (5.17)

As we can see the bicrossproduct structure (with cocycle in this case) allows us to recover
Fun,(HW) in an easy way from the enveloping (dual) algebf@aHW).
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